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Abstract 

This paper contains a summarization of five years work on an investi- 
gation on heat transfer to the transpired turbulent boundary layer, The 
experimental results are presented for friction coefficient and Stanton number 
over a wide range of blowing and suction for the case of constant free-stream 
velocFty, 5olding ccnstarrt certain blowing parameters. The problem of the 
accelerated turbulent boundary layer with transpiration is considered, experi- 
mental data are presented and discussed, and theoretical models for solution 
of the momentum equation under these conditions are presented. Data on teirbulenr 
Prandtl number are presented so that solutions to the energy equation may be 
obtained. Some examples of boundary layer heat transfer and friction coefficient 
are presented using one of the models discussed, employing a finite difference 
solution method. 



Nomenclature 

English letter symbols: 

A+ constant in the Van Driest Hypothesis, Eqs. (18) and (20) 

A+ value of A+ for the case of no transpiration and no pressure g r a d i e n c  
0 

B+ constant in the Evans hypothesis, Eq. (22) 

value of B+ for the case of no transpiration and no pressure gradient  

a friction blowing parameter, (vO/U')/(cf/2) 
a friction blowing parameter, (v0/ u,) / (C / 2) 

£0 
a heat transfer blowing parameter, (vo/Uw)/St 

a heat transf er blowing parameter, (v0/Uoo) /Sto 

friction coefficient 

friction coefficient for the case of no transpiration, at the 

same value of Re 
& 2  

specific heat at constant pressure 

lag constant in Eq. (24) 

mixing-length damping function 

blowing or suction fraction, vw/uW , I ~ " / G ~  

free-stream mass velocity, f-? Urn 

proportionality factor in Newton's 2nd Law 

H boundary layer shape factor, 

h convection heat transfer coefficient 

K 2 
acceleration parameter, (V /urn) (duoo/dx) 

k mixing-length constant for the inner region 

R mixing-length 

turbulence length scale 

iii 



mass t r a n s f e r  r a t e  a t  f l u id - su r f ace  i n t e r f a c e  

time-averaged p re s su re  

p re s su re  g r a d i e n t  parameter,  -K/(Cf/2) 312 

P r a n d t l  number, ucp/y 

tu rbu len t  P rand t l  number, FH 
h e a t  f l u x  a t  f l u id - su r f ace  i n t e r f a c e  

enthalpy th ickness  Reynolds number, A 2 G m / ~  

momentum th ickness  Reynolds number, 62~,/V 

l o c a l  tu rbulence  Reynolds number, 9, \I- /v t 

x-Reynolds number, X G ~ / ~  

Stanton number, h/  (G,cp) 

Stanton number f o r  F = 0 a t  same  re^ 
time averaged va lue  of temperature 

to temperature a t  f l u id - su r f ace  i n t e r f a c e  

oo f ree-s tream temperature 

t '  f l u c t u a t i n g  p a r t  o f  temperature 

- 
t ' v r  t u rbu len t  h e a t  f l u x  

u ' f l u c t u a t i n g  p a r t  of x-component of v e l o c i t y  
- 
u time averaged va lue  of x-component of v e l o c i t y  

Urn free-stream v e l o c i t y  
- 
u ' v '  t u rbu len t  shea r  s t r e s s  

v ' f l u c t u a t i n g  p a r t  of y-component of v e l o c i t y  
- 
v time averaged va lue  of y-component of v e l o c i t y  

v normal d i r e c t i o n  v e l o c i t y  a t  f l u id - su r f ace  i n t e r f a c e  
W 

+ 
v 

W 
a  blowing parameter,  V , / J V  



x d i s t a n c e  measured a long  s u r f a c e  i n  d i r e c t i o n  of flow 

+ 
X x ~ Q ~ T / v  

Y d i s t a n c e  measured normal t o  s u r f a c e  

+ + 
Y c r i t  

va lue  of y  a t  edge of v i scous  sublayer  

Greek l e t t e r  symbols: 

a thermal d i f  f u s i v i t y  , y/ ( p cp) 

Y thermal conduct iv i ty  

6 momentum boundary l a y e r  th ickness  

&. 99 
99 percent  th ickness  of momentum boundary l a y e r  

cn - 
1 

displacement t h i ckness ,  ( 1  - u/Um)dy 
0 

cn - 
2 

momentum th i ckness ,  ( 1  - u/Um) (;;/urn) dy 
0 

A thermal boundary l a y e r  th ickness  

A2 enthalpy th ickness  of thermal boundary l a y e r ,  

FH eddy d i f f u s i v i t y  f o r  h e a t  

5 4  eddy d i f f u s i v i t y  f o r  momentum 

X a mixing-length cons tan t  f o r  t h e  o u t e r  reg ion  

1-I dynamic v i s c o s i t y  

V kinematic v i s c o s i t y ,  p / p  

P dens i ty  

T t o t a l  shear  s t r e s s  

T shea r  s t r e s s  a t  w a l l  s u r f a c e  
0 

Tt  
tu rbu len t  component of  t o t a l  shear  s t r e s s  

T 
+ 

I- /TO 



Introduction - Interest in the behavior of the transpired turbulent boundary 
layer extends back at least to the early 1950's when transpiration was first 

being investigated as a means of cooling aerodynamic surfaces under high 

velocity flight conditions. This interest is reflected in some of the pioneer 

papers and reports of Rubesin [I], and the paper of Dorrance and Dore [2], 

While these contributions were on the theoretical side, experimental work 

began to take place, notably in the Chemical Engineering Department at M,I,T,, 

and is reflected in the papers of Mickley et a1 [3,4]. The early 1960% saw 

interest spreading with significant contributions from Great Britain, in 

particular those of Stevenson [5], McQuaid [6], Black and Sarnecki [75 and 

contributions from the Soviet Union, for example Romanenko and Karchenko [8] , 

and Kutateladse and Leont'ev [g] . During the past five years the number of 
contributions has grown into dozens. A complete bibliography, especiaiiy 

since 1960, is outside of the scope and purposes of the present paper, and 

the above citations are simply noted to provide some idea of interest inten- 

sity as a function of time. 

Transpiration from a solid surface over which a fluid is flowing, and 

on which a boundary layer is developing, is of interest in a number of quite 

different types of applications. In the typical transpiration cooling appliea- 

tion, the solid surface is constructed from some kind of poross sciid n a t 2 r L a . 1 ,  

Cooling fluid, chemically the same as the free-stream, is then forced through 

the surface with the objective of protecting the surface from a hot free-strean, 

This is a boundary layer problem for which the normal component of velocity at 

the solid-fluid interface is non-zero, but otherwise the same momentum ansd 

energy boundary layer differential equations must be solved as for the 



non-transpired boundary layer. A variation on this problem occurs when 

the cooling fluid is a chemically different specie than the free-stream 

fluid. For example, helium might be injected as a coolant to protect a 

surface from a high temperature air free-stream. In this case the 

mass-diffusion equation of the boundary layer must be solved in addition 

to the momentum and energy equations. There are obviously similarities 

between these two types of problems, but also fundamental differences, 

Both are "mass transfer" problems in the sense that mass is transferred 

across the fluid-solid interface, but the latter is also a mass diffusion 

problem, while the former is not. 

Another transpiration problem arises when there is evaporation or 

sublimation from an interface into a boundary layer, or condensation onto 

the interface, A further variation on the problem arises when there is 

chemical reaction either within the boundary layer or at the surface, 

In any of the cases cited, the direction of the flow normal to 

the surface at the interface could be into the surface, or it could be out 

of the surface. The terms "blowing" and "suction" are frequently used to 

denote the direction of flow at the interface, while the word "transpirationa' 

generally is taken to embrace both cases. Suction is sometimes used as a 

scheme for aerodynamic boundary layer control because it is possible to i a -  

hibit or prevent boundary layer separation by suction. 

These various types of applications suggest why chemical, mechanical 

and aeronautical engineers have all made significant contributions to the 

theory, and the terminology to a certain extent reflects these various origins 

of interest, 



I n  1965, t h e  au thor  and h i s  co l leagues  embarked on a comprehensive 

experimental  i n v e s t i g a t i o n  of h e a t  t r a n s f e r  t o  t h e  t r a n s p i r e d  tu rbu len t  

boundary l a y e r  w i th  t h e  ob jec t ives  of  r e so lv ing  some of t h e  con t r ad ic t ions  

i n  t h e  e a r l i e r  d a t a ,  f i l l i n g  i n  obvious ho le s ,  and u l t i m a t e l y  of obtaining 

necessary information f o r  a  more fundamental theory  so  t h a t  adequate boundary 

l a y e r  p red ic t ions  can be made over a  wide v a r i e t y  of ope ra t ing  condi t ions .  

To d a t e ,  t h i s  work has been e n t i r e l y  concerned w i t h  t h e  s i n g l e  chemical 

component problem ( i . e . ,  no mass d i f f u s i o n )  u s ing  a i r  a s  t h e  working medium, 

and employing small temperature d i f f e r e n c e s  f o r  t h e  h e a t  t r a n s f e r  work, s o  

t h a t  i t  is  e f f e c t i v e l y  t h e  cons tan t  proper ty  boundary l a y e r  t h a t  i s  considered, 

A t  t h e  p re sen t  t i m e ,  t h e  t e c h n i c a l  a p p l i c a t i o n  t h a t  provides t h e  mjor impetus 

f o r  t h i s  program is t h e  prospect  of  cool ing  gas t u r b i n e  b lades  by transpira- 

t i on .  This  a p p l i c a t i o n  involves  t h e  t r a n s p i r e d  boundary l a y e r  with large 

temperature d i f f e r e n c e s ,  as w e l l  a s  o t h e r  complicat ions t h a t  w i l l  be briefly 

discussed a t  t h e  end of t h e  paper ,  b u t  a  fundamental understanding s f  the 

behavior of t h e  i d e a l i z e d  low-velocity,  cons tan t  proper ty  ca se  i s  essential 

i f  any s i g n i f i c a n t  progress  is going t o  be  made i n  t h e  more complex 

app l i ca t ions .  

The o b j e c t i v e  of t h i s  paper i s  t o  p re sen t  a summary of some of the 

more s i g n i f i c a n t  r e s u l t s  and conclusions t h a t  have r e s u l t e d  from t h i s  program, 

Much of what w i l l  be  presented (although no t  a l l )  has  appeared i n  v a r i a s ~ s  re- 

p o r t s  and papers ,  b u t  s i g n i f i c a n t  po r t ions  of t h e  work have now been completed, 

and i t  seems an appropr i a t e  t ime t o  a t tempt  t o  summarize. 

The genera l  problem considered i s  perhaps b e s t  i l l u s t r a t e d  by reference 

t o  Fig. 1. A i r  f lows a t  a s teady  r a t e  a long  a  f l a t  s u r f a c e  which i s  porous, 

and through which a i r  can b e  forced  i n t o  t h e  boundary l a y e r  o r  withdrawn  fro^ 



t h e  boundary l a y e r  (blowing o r  s u c t i o n ) .  It is presumed t h a t  t h e  su r face  

is  aerodynamically smooth, which means t h a t  t h e  t r a n s p i r a t i o n  holes  a r e  

small r e l a t i v e  t o  t h e  th ickness  of t h e  laminar  sublayer  of t h e  boundary 

l a y e r ,  and t h a t  t h e i r  spacing is  small r e l a t i v e  t o  t h e  th ickness  s f  the 

laminar sublayer .  It is presumed t h a t  t h e  s o l i d  s u r f a c e  i s  a  hea t  con- 

ductor ,  and t h a t  h e a t  can be conducted t o  o r  from t h e  su r f ace .  It i s  

f u r t h e r  presumed t h a t  t h e  s u r f a c e  cons t ruc t ion  i s  such t h a t  t h e  t r a n s p i r e d  

f l u i d  is  i n  thermal equi l ibr ium wi th  t h e  s o l i d  s u r f a c e  a t  t h e  i n t e r f a c e ,  

I n  genera l ,  we would l i k e  t o  consider  t h e  ca se  where t h e  mass t r a n s f e r  

r a t e  fit' ( i . e . ,  t h e  t r a n s p i r a t i o n  r a t e )  is  any a r b i t r a r y  func t ion  a£ 

d i s t a n c e  x a long  t h e  s u r f a c e ,  where t h e  convection h e a t  t r a n s f e r  rate 

4" i s  any a r b i t r a r y  func t ion  of d i s t a n c e  x a long  t h e  s u r f a c e ,  andlor 

t h e  s u r f a c e  temperature to i s  any a r b i t r a r y  func t ion  of x  . We wsukd 

l i k e  t o  consider  t h e  case  where t h e  free-stream v e l o c i t y  Urn may vary i n  

any a r b i t r a r y  manner wi th  x , bu t  we w i l l  r e s t r i c t  t h e  free-stream tem- 

pe ra tu re  trn t o  a  cons tan t .  The boundary l a y e r  i s  two-dimensional, w i t h  

t h e  coord ina te  y  being used t o  measure t h e  d i s t a n c e  normal t o  t h e  surface, 

Under t hese  cond i t i ons ,  we a r e  i n t e r e s t e d  i n  t h e  development of a  momentum 

boundary l a y e r ,  cha rac t e r i zed  by a  th ickness  6 , and a  thermal boundary 

l a y e r  cha rac t e r i zed  by a  th ickness  A . 
It should be  added t h a t  t h e  problem descr ibed ,  bu t  wi th  t h e  boundary 

l a y e r  laminar  r a t h e r  than  t u r b u l e n t ,  is of equal  i n t e r e s t  i n  many applications 

inc luding  t h e  t u r b i n e  b l ade  cool ing  one. However, a  weal th  of c losed form 

s o l u t i o n s  e x i s t  f o r  p a r t i c u l a r  i d e a l i z e d  cases ,  and wi th  modern f i n i t e - d i f f e r e n c e  

c a l c u l a t i o n  methods t h e  laminar  problem poses no p a r t i c u l a r  d i f f i c u l t y  even for 

very  complicated boundary condi t ions .  



The remainder of t h e  paper is  i n  s i x  s ec t ions .  The case  of a ccnstant  

f ree-stream v e l o c i t y  is considered f i r s t .  Experimental r e s u l t s  covering the  en- 

t i r e  range of blowing and s u c t i o n  a r e  presented  f o r  t h e  case  of a constant 

r a t e  of t r a n s p i r a t i o n  and a cons tan t  s u r f a c e  temperature.  Methods o f  extend- 

i n g  t h e s e  r e s u l t s  t o  problems of a r b i t r a r i l y  vary ing  t r a n s p i r a t i o n  sate  and 

a r b i t r a r i l y  vary ing  s u r f a c e  temperature,  u s ing  t h e  i n t e g r a l  equat ions o f  the 

boundary l a y e r ,  a r e  then  discussed.  

Next t h e  problem of an  acce l e ra t ed  free-stream v e l o c i t y  i s  considered, 

It w i l l  b e  seen  t h a t  s imple c o r r e l a t i o n s  toge the r  w i th  t h e  i n t e g r a l  equations 

of  t h e  boundary l a y e r  no longer  appear adequate  a s  t o o l s  f o r  p e r f o r m a c e  pre- 

d i c t i o n ,  and a more fundamental theory i s  needed. 

The two s e c t i o n s  fo l lowing  con ta in  a d i scuss ion  of some models that 

can be  used f o r  d i r e c t  s o l u t i o n  (by f i n i t e  d i f f e r e n c e  methods) of the momentum 

and energy d i f f e r e n t i a i  equat ions of t h e  boundary l a y e r .  Constants f o r  use 

i n  t hese  models, der ived  from experimental da t a ,  a r e  presented.  

F i n a l l y ,  some examples of p r e d i c t i o n s  us ing  one of t h e  models applied 

t o  some very d i f f i c u l t  cases  a r e  presented.  The paper ends wi th  a discession 

of some of t h e  f u t u r e  problems which must be considered.  



The Case of Constant Free-Stream Veloci ty - It is  f i r s t  i n s t r u c t i v e  t o  

examine t h e  momentum i n t e g r a l  equat ion  of t h e  boundary l a y e r ,  p a r t i c u l a r i z e d  

t o  t h e  c a s e  of cons tan t  p r o p e r t i e s  and cons tan t  f ree-stream v e l o c i t y ,  

An a l t e r n a t i v e  form i s  obta ined  i f  t h e  f r i c t i o n  c o e f f i c i e n t  is  

f ac to red  from t h e  right-hand s i d e ,  and i f  t h e  r e s u l t i n g  term conta in ing  the 

t r a n s p i r a t i o n  v e l o c i t y  v is  def ined  as a "blowing parameter119 
0 Bf 

I n  laminar  boundary l a y e r  theory ,  s i m i l a r i t y  s o l u t i o n s  t o  the mcmentum 

equat ions a r e  obtained when B.£ is  maintained cons tan t  a long t h e  surface  

Since f o r  a laminar  boundary l a y e r  C 12 v a r i e s  a s  Re 
f 

-'I2 s i m i l a r  ve- 
x 

l o c i t y  p r o f i l e s  a r e  then  ev iden t ly  obtained i f  t h e  r a t e  of blowing ( o r  suetion) 

decreases  a long  t h e  s u r f a c e  a s  t h e  square  r o o t  of d i s t a n c e  x . For a turbu-  

l e n t  boundary l a y e r ,  an  analogous s i t u a t i o n  obta ins .  Bf can be  i n t e r p r e t e d  

phys i ca l ly  as t h e  r a t i o  of t h e  t r a n s p i r e d  momentum r a t e  t o  t h e  shear  fo rce ,  

I f  t h i s  r a t i o  is  maintained cons tan t  a long t h e  s u r f a c e ,  similar p r o f i l e s  a r e  

obtained f o r  a laminar  boundary l a y e r ,  and f o r  a t u rbu len t  boundary Payer a 

so-cal led "equilibrium" boundary l a y e r  i s  obta ined ,  one t h a t  possesses  o u t e r  



reg ion  s i m i l a r i t y  of v e l o c i t y  p r o f i l e s .  However, i n  t h e  ca se  of the tu rbu-  

l e n t  boundary l a y e r ,  C /2  tends t o  vary  wi th  d i s t a n c e  x approximately as 
f  

-0.2 x , SO cons tan t  Bf corresponds t o  a blowing r a t e ,  vo/Uw , whict 
-0.2 

decreases  i n  t h e  d i r e c t i o n  of flow a s  x 

The cons tan t  
Bf 

boundary l a y e r  t hus  appears  t o  be a fundaeneac-al 

ca se ,  and was a case  s tud ied  by Simpson, e t  a 1  [ l o ] .  Simpson 

a l s o  d id  extensi-;e t e s t i n g  h o l d i ~ g  vO/3, constailt  r a t i i s r  than Bf " 

(Hereaf te r  vo/U, w i l l  be  r e f e r r e d  t o  as F , t h e  blowing f r a c t i o n ,  Note 

a l s o  t h a t  s i n c e  only t h e  cons tan t  dens i ty  ca se  is be ing  d iscussed ,  

vo/U, = &''/Goo , i . . ,  F is  a mass f l u x  r a t i o ,  and t h i s  i s  how i t  shoaild 

be i n t e r p r e t e d  i n  compressible flow a p p l i c a t i o n s . )  

One of t h e  conclusions from Simpson's work is  t h a t  Cf/2 can be  

expressed as a func t ion  of t h e  momentum th ickness  Reynolds number, ReM 

and t h a t  v i r t u a l l y  t h e  same func t ion  o r  r e l a t i c n s 3 i ~  is  gbta ige2  f e r  ax- 

periments a t  cons tan t  F a s  f o r  experiments a t  cons tan t  Bf En. fact, 

t h i s  func t ion  seems t o  be  remarkably independent of how F v a r i e s  along the 

s u r f a c e ,  and i t  is  only f o r  s t e p  changes i n  F t h a t  any apprec iab le  differ- 

ence can be  noted. 

A f u r t h e r  po in t  of i n t e r e s t  t h a t  can be seen  i n  t h e  momentum integral 

equat ion ,  Eq. ( I ) ,  i s  t h a t  when vo/Uw = F is  nega t ive ,  t h e  p o s s i b i l i t y  

e x i s t s  t h a t  t h e  right-hand s i d e  of t h e  equat icn  w i l l  go t c  zero ,  leading to 

a s i t u a t i o n  where t h e  momentum th ickness  of t h e  boundary l a y e r  does not  grow 

wi th  x . A s  a mat te r  of f a c t ,  t h i s  is  a s i t u a t i o n  t h a t  w i l l  always be 

approached where F is  maintained cons tan t  and negat ive .  C / 2  has a de- 
f  

c r eas ing  tendency wi th  inc reas ing  momentum th i ckness ,  s t a r t i n g  i n d e f i n i t e l y  

h igh  a t  t h e  beginning of t h e  p l a t e ,  and so  r ega rd l e s s  of t h e  va lue  of F 



t h i s  po in t  of equi l ibr ium w i l l  u l t i m a t e l y  be  reached. This is  commonly 

c a l l e d  t h e  "asymptotic s u c t i o n  layer" .  Note t h a t  f o r  t h i s  condi t ion  B 
f 

is  equal  t o  -1 , and thus  -1 rep resen t s  a lower l i m i t  on 
Bf " 

Simpson's experiments can be  c o r r e l a t e d  w i t h i n  t h e  l i m i t s  o f  the 

experimental unce r t a in ty  of t h e  d a t a  i t s e l f  by t h e  fol lowing equat ion,  

A p l o t  of Eq. ( 4 )  i s  shown on Fig. 2. Since C 12 i s  contained within 
f 

Bf , Eq. (4)  is  a l i t t l e  awkward t o  use. I n  Fig. 2,  F i s  employed as 

a parameter a s  w e l l  a s  
Bf 

, t ak ing  advantage of t h e  experimental f a c t  

t h a t  t h e  same func t iona l  r e l a t i o n s h i p  seems t o  be  obtained f o r  constant  

F experiments a s  f o r  cons tan t  Bf experiments. 

The f a c t  t h a t  moving a l o ~ g  a cozs t an t  Bf l i n e  kc i s  t c  decress iag 

values of F can be  c l e a r l y  seen.  Note a l s o  t h a t  t h e  l i n e s  f o r  negative 

cons tan t  F a r e  s l i g h t l y  concave upwards. I f  extended, t h e s e  l i n e s  will 

approach va lues  of C 12 equal  t o  t h e  nega t ive  of F . 
f 

An a l t e r n a t i v e  way of p re sen t ing  t h e s e  r e s u l t s  is  shown i n  Fig. 3 

where t h e  r a t i o  of 
Cf  t o  t h e  va lue  of Cf , a t  t h e  same momentum thick- 

ness  Reynolds number f o r  t h e  case  of no t r a n s p i r a t i o n ,  is  p l o t t e d  as a 

funct.ion of another  blowing pa rane te r ,  hf . bf d i f f e r s  from Sf i n  the t  

F is  d iv ided  by t h e  va lue  of C 12 f o r  no t r a n s p i r a t i o n ,  a t  t h e  same mo- 
f 

mentum th ickness  Reynolds number, r a t h e r  than wi th  r e spec t  t o  t he  l oca l  

va lue  of Cf/2 . bf is  thus  a more convenient parameter t o  use  in pre-  

s e n t i n g  da t a  on Cf because i t  does n o t  con ta in  t h e  va lue  of G sought, 
f 

I n t e r e s t i n g l y ,  Eq. ( 4 )  p l o t s  a s  a s i n g l e  l i n e  on t h i s  diagram, and illustrates 



v i v i d l y  t h e  in f luence  of blowing and s u c t i o n  on t h e  f r i c t i o n  c o e f f i c i e n t ,  

Also superimposed on t h e  diagram a r e  t h e  r e s u l t s  of t h e  laminar s i n t i l a r i t y  

s o l u t i o n s  mentioned e a r l i e r .  The behavior  i s  q u i t e  analogous, e s p e c i a l l y  

on t h e  s u c t i o n  s i d e ,  bu t  it should be  noted t h a t  t h e  laminar s i m i l a r i t y  

s o l u t i o n  does l ead  t o  a zero va lue  of Cf a t  b = 3.47 . This point i s  
f 

gene ra l ly  r e f e r r e d  t o  a s  t h e  "blow-off" p o i n t ,  and i t  i s  t h e  va lue  a t  which 

t h e  boundary l a y e r  i s  l i t e r a l l y  blown o f f  t h e  wa l l .  However, Eq. (4 )  6snl:y 

approaches zero and does no t  i n d i c a t e  a d e f i n i t e  blow-off po in t .  There is 

no reason t o  suppose t h a t  blow-off is  n o t  j u s t  a s  r e a l  a phenomena f o r  the  

tu rbu len t  boundary l a y e r  as f o r  a laminar  boundary l a y e r ,  b u t  i t  i s  ex- 

tremely d i f f i c u l t  t o  d e t e c t  experimental ly  because t h e  unce r t a in ty  i n  mea- 

s u r i n g  Cf becomes i n d e f i n i t e l y  l a r g e  a s  Cf approaches zero. The f a c t  

t h a t  Eq. ( 4 )  does n o t  i n d i c a t e  blow-off should only be i n t e r p r e t e d  as a 

def ic iency  i n  t h e  form of t h e  empir ica l  equat ion used. A popular rule e f  

thumb i s  t h a t  blow-off f o r  a t u rbu len t  boundary l a y e r  w i l l  occur a t  approxi- 

mately F = 0 .01 . ,  and t h i s  r u l e  of thumb is  c e r t a i n l y  n o t  i n c o n s i s t e n t  with 

t h e  r e s u l t s  on Fig. 3 when i t  i s  noted t h a t  t h e  unce r t a in ty  i n  
C f / C f o  

i s  

of t h e  order  of magnitude 0 .1  a t  t h e  right-hand extreme of t h e  diagram. 

The shape f a c t o r  of t h e  boundary l a y e r ,  H , is  o f t e n  of interest, 

and t h e  fol lowing equat ion is  an empir ica l  r ep re sen ta t ion  of Simpson's mea- 

sure~nelits f u r  cons tan t  f ree-stream ve loc i ty .  

A p l o t  of Eq. (5) is  shown on Fig. 4 .  The s i g n i f i c a n t  po in t  i s  t h a t  

blowing l eads  t o  h igh  va lues  of H , and t h a t  f o r  F approaching 0,01 B 



becomes g r e a t e r  than  2.0. It is  perhaps worth no t ing  t h a t  f o r  t h e  non- 

t r a n s p i r e d  boundary l a y e r  i n  an adverse p re s su re  g r a d i e n t ,  s epa ra t ion  

genera l ly  tends t o  occur  when H i s  somewhere above 2.0. This i s  one 

of many in s t ances  of s i m i l a r i t y  between t h e  behavior  of t h e  t r ansp i r ed  

f l a t - p l a t e  boundary l a y e r  wi th  p o s i t i v e  t r a n s p i r a t i o n ,  and t h e  adverse 

p re s su re  g rad ien t  non-transpired boundary l a y e r .  

I t  f-s o ~ l y  f e i r  t o  remark t h a t  the f r i c t i g ~  c o e f f i c i e n t  da:s 

of Simpson, upon which t h i s  e n t i r e  d i scuss ion  is  based,  whi le  unques- 

t ionably  t h e  most ex tens ive  d a t a  a v a i l a b l e ,  has  been t h e  sub jec t  of 

some controversy.  The case  a g a i n s t  i t  has  been very w e l l  pu t  by Squire  

[ l l ] ,  who f e e l s  t h a t  Simpson's f r i c t i o n  c o e f f i c i e n t s  a r e  too high. There 

is  ample room f o r  argument because of t h e  very cons iderable  d i f f i c u l t y  i n  

measuring f r i c t i o n  c o e f f i c i e n t s ,  and t h e  d i f f e r e n t  ways i n  which experi-  

mental d a t a  can be i n t e r p r e t e d .  The w r i t e r  would only  add a t  t h i s  tine 

t h a t  f r i c t i o n  c o e f f i c i e n t s  c l o s e  t o  Simpson's have been measured i n  sub- 

sequent work on t h e  same appara tus ,  bu t  i n  connection wi th  a c c e l e r a t i n g  

flows, and where o t h e r  methods of d a t a  i n t e r p r e t a t i o n  have been used, 

Furthermore, t h e r e  is  an  i n t e r n a l  consis tency between Simpson" da t a  and 

t h e  h e a t  t r a n s f e r  d a t a  t o  be  discussed s h o r t l y .  There seems no ques t ion  

t h a t  t h e  experimental unce r t a in ty  i n  t h e  h e a t  t r a n s f e r  d a t a  is  l e s s  than 

f o r  t h e  f r i c t i o n  c o e f f i c i e n t  d a t a  because t h e  h e a t  t r a n s f e r  r a t e s  are 

measured by a  d i r e c t  method. The i n t e r n a l  cons is tency  shows up p a r t i c u l a r l y  

i n  t h e  t h e o r e t i c a l  models t o  be  d iscussed  l a t e r ;  a  s i n g l e ,  reasonable model 

can be used t o  p r e d i c t  both t h e  h e a t  t r a n s f e r  d a t a  and t h e  f r i c t i o n  coeffi- 

c i e n t  d a t a  equa l ly  wel l .  



Turning now t o  t h e  case  of h e a t  t r a n s f e r  w i th  t r a n s p i r a t i o n ,  b u t  

w i th  free-stream v e l o c i t y  cons tan t  and s u r f a c e  temperature cons t an t ,  con,- 

s i d e r  f i r s t  t h e  energy i n t e g r a l  equat ion of t h e  boundary l a y e r ,  pa r t i cu -  

l a r i z e d  t o  t h e  case  of cons tan t  p r o p e r t i e s ,  cons tan t  free-stream v e l o c i t y ,  

and cons tan t  s u r f a c e  temperature.  

A h e a t  t r a n s f e r  blowing parameter,  
Bh 

, i s  defined i n  a manner 

completely analogous t o  t h e  d e f i n i t i o n  of t h e  f r i c t i o n  blowing parameter.  

The blowing parameter Bh can be i n t e r p r e t e d  phys i ca l ly  i s  t he  

r a t i o  of t h e  t r a n s p i r e d  thermal energy t o  t h e  conducted thermal energy, 

Again, i t  is  no t  s u r p r i s i n g  t h a t  ho ld ing  t h i s  parameter cons tan t  a long  a 

s u r f a c e  l eads  t o  s i m i l a r i t y  of temperature p r o f i l e s  i n  t h e  laminar boundary 

l a y e r  case ,  and apparent ly  l e a d s  t o  o u t e r  reg ion  temperature p r o f i l e  s i m i -  

l a r i t y  i n  t h e  tu rbu len t  boundary l a y e r  case.  There is  a l s o  another  p h y s i c a l  

s i g n i f i c a n c e  t o  cons tan t  Bh . I n  t h e  case  of blowing, i f  t h e  t r a n s p i r e d  

f l u i d  o r i g i n a t e s  from a cons tan t  temperature source  o r  plenum below the sur- 

f a c e ,  and i f  t h e r e  i s  no independent energy source  wi th in  t h e  su r f ace  wall 



i t s e l f ,  cons tan t  Bh y i e l d s  a cons tan t  s u r f a c e  temperature to . In o the r  

words, t o  o b t a i n  a cons tan t  s u r f a c e  temperature by t r a n s p i r i n g  a fluid which 

s t a r t s  ou t  a t  a s i n g l e  uniform temperature,  i t  i s  necessary f o r  t h e  blowing 

f r a c t i o n  F t o  decrease  a long  t h e  s u r f a c e  i n  such a manner a s  to h o l d  
iS;h 

cons tan t .  Experimentally i t  is  found t h a t  F must decrease a s  approximtely 

t h e  0.2 power of x , a s  i n  t h e  case  of cons tan t  B f "  

Note f u r t h e r  t h a t  a cons tan t  nega t ive  va lue  of F must l ead  to an 

asymtot ic  s u c t i o n  l a y e r  f o r  t h e  same reasons a s  were discussed f o r  the  mo- 

mentum boundary l a y e r .  I n  o t h e r  words, under condi t ions  of cons tan t  s~ctian, 

Stanton number approaches a minimum, equal  t o  t h e  negat ive  of F . 

The experiments of Moffat and Kays [12] ,  and of Whitten, et a8 [133, 

i n d i c a t e  t h a t  a l though Bh probably r ep re sen t s  t h e  more fundamental case, 

cons tan t  F y i e l d s  t o  a l l  i n t e n t s  and purposes t h e  same va lue  of Stanton 

number f o r  a given va lue  of enthalpy th ickness  Reynolds number, Re , and H 

F . I n  f a c t ,  Whit ten 's  r e s u l t s  i n d i c a t e  t h a t  F can vary r a t h e r  considerably 

along t h e  s u r f a c e  wi th  n e g l i g i b l e  e f f e c t  upon t h i s  r e l a t i o n s h i p .  The very 

extens ive  d a t a  of Moffat,  and of Whitten, f o r  uniform s u r f a c e  temperature, 

can be  represented  q u i t e  adequately by t h e  fol lowing empir ica l  equat ion ,  

Equation (8) i s  p l o t t e d  on Fig. 5 where both B and t h e  more con- 
h 

venien t  F a r e  used a s  parameters.  It should be emphasized t h a t  strictly 

speaking t h e s e  d a t a  apply only f o r  cases  where t h e  v i r t u a l  o r i g i n  of b c t h  

t h e  thermal and momentum boundary l a y e r s  is t h e  same, which means that the 



thermal boundary layer thickness is of the same order magnitude as the 

momentum boundary layer thickness (actualiy about 1% greater for Pr = 0-7 

and F = 0 ), If the thermal boundary layer thickness is substantially 

different from the momentum boundary layer thickness, and this can occur 

when the surface temperature varies or when the virtual origin of the 

thermal boundary layer differs from that of the momentum boundary layer, 

somewhat different results will be obtained, although the effects are nor 

large. This is a problem that can best be discussed later in connection 

with a theoretical model of the thermal boundary layer. 

An alternative method of presentation of these results is shown on 

Figure 6. Here everything is quite analogous to the very similar results 

for friction coefficient on Figure 3, A more convenient blowing parameter, 

bh = F/Sto , is introduced, and the laminar similarity solution results are 

superimposed. In addition, the following equation proposed by Kutateladze 

and Leont'ev [g] , based on analytic considerations, is included. 

Figure 6 illustrates very graphically how blowing decreases the heat 

transfer coefficient, and this, of course, is the primary reason for the 

interest in transpiration as a method of protecting surfaces against high 

temperature fluids. 

The same comments regarding blow-off as were made in connection w i t h  

the friction coefficients apply here. It is, however, of interest to n o t e  

that the laminar similarity solution for heat transfer does not really indicate 



a blow-off point, because for Pr = .70 the Stanton number is still greater 

than zero at the point where the friction coefficient has reached zero, 

The Kutateladze and Leont'ev solution predicts blow-off at b = 4,0 , but h 

over most of the range it is very close to the laminar solution, The experirner,ts 

of Moffat, and of Whitten, include extensive amounts of data for 
bh 

eqcai to i 

and greater for which St is measurably above zero, It thus appears thas the 

Kutateladze and Leont'ev solution predicts blow-off a little early, 

It has been noted previously that both the friction coefficient and tne 

Stanton number tend to be rather strong functions of local conditions a long  

the surface rather than the history of the boundary layer up to the point hn 

question. In other words, it has been stated that Stanton number tends to 

be primarily a function of local enthalpy thickness Reynolds number, Re H 3  

and F , and is relatively independent of how F has varied up to the point 

in question, Figures 7 and 8, which show some of the experimental dzta of 

Whitten et a1 [13] illustrate this point very well, Both a step down and a 

step up in F are shvwn. Although there is in both cases a detectable 

recovery region, most of the adjustment to the new boundary condition occurs 

very rapidly. These figures represent extreme cases, so it is not surprising 

that when there are continuous variations of F the recovery is virtually 

undetectable. 

The friction coefficient behavior is substantially the same, although 

it is much more difficult to accurately measure friction coefficients just 

following a step in blowing. 

The experimental facts that C 12 is primarily a function only  sf f 

R% and F , and St is a function primarily only of Re and F , lead to 
H 



a relatively simple approximate procedure for calculating Cf and St along 

a surface where F varies in some arbitrary manner, One need only sub- 

stitute Eq. (4) into Eq. (3) and Eq. (8) into Eq. ( 7 ) ,  and one has s b 2 L e  

differential equations for Re and Re which may be integrated, at least 
M H 

numerically, to yield momentum and enthalpy thickness Reynolds numbers as 

functions of x . Then Eqs. (4) and (8) are used to determine Cf/2 and 

St at each local point. This procedure works remarkably well, although it 

is, of course, restricted to the constant property boundary layer with 

constant free-stream velocity, and in the case of the energy equation, we 

have so far restricted consideration to the constant surface temperature 

problem. 

Whitten [13] also presents data for step changes in surface temperature 

with transpiration, and includes step changes in transpiration Prates, With 

these results it is possible to use the method of superposition to bcild up 

solutions to the energy equation for cases where both F and surface Lempera- 

ture vary in any arbitrary manner along the surface, and indeed mitten has 

done just this [14]. However, at some point one must question whether I-t is 

not more fruitful to attempt to devise a more fundamental model of the 

turbulent transport processes so that all manner of variations in boundary 

conditions, and including varying fluid properties and viscous dissipatz~n~ 

can be handled with a single consistent theory based on the differential 

equations of the boundary layer rather than the integral equations, The 

constant property, constant free-stream velocity problem with arbit?rarily 

varying F and arbitrarily varying 
to ' probably represents about the Lbmi t 

of integral methods, at least where reasonable precision is desired, aLthough 



i n t e g r a l  methods can be pushed considerably f a r t h e r  where low p rec i s ion  i s  

adequate ( s e e  f o r  example, Kays [15]).  



The Case of Varying Free-Stream Veloci ty - The momentum and energy i n t e g r a l  

equat ions ,  f o r  cons tan t  p r o p e r t i e s  and cons tan t  s u r f a c e  temperature,  but now 

inc luding  a  v a r i a b l e  free-stream v e l o c i t y ,  may be w r i t t e n  i n  t h e  1EolLowin.g 

form: 

2 
where dRex = U_dx/v ; K = (v /Urn) (dU_/dx) 

One t h i n g  t h a t  i s  immediately apparent  from these  equat ions i s  t h a t  

t h e  p re s su re  g rad ien t ,  which is  incorpora ted  i m p l i c i t l y  i n  t h e  a c c e l e r a t i o n  

parameter K , has a  d i r e c t  i n f luence  on t h e  development of t h e  momentum 

equat ion,  bu t  any in f luence  on t h e  energy equat ion must be  an  i n d i r e c t  one 

coming i n  through t h e  tu rbu len t  t r a n s p o r t  p r o p e r t i e s  and t h e  v e l o c i t y  profile, 

An important s imp l i fy ing  f e a t u r e  of t h e  previous ly  discussed cons tan t  f r ee -  

s t ream v e l o c i t y ,  cons tan t  s u r f a c e  temperature problem is  t h a t  t h e  momentum 

and thermal boundary l a y e r s  tend t o  grow toge the r ,  and t h i s  i s  one reason 

why r e l a t i o n s  such a s  Eq. (8) hold up remarkably w e l l  i n  t h e  f a c e  o f  a r b i -  

t r a r i l y  vary ing  F a long  t h e  sur face .  It should be  apparent  from Egs,  $10) 

and (11) t h a t  such w i l l  n o t  be  t h e  case  when free-stream v e l o c i t y  varies, 

Before examining t h e  kind of  h e a t  t r a n s f e r  behavior  t h a t  i s  obtained 



when free-stream v e l o c i t y  v a r i e s ,  i t  is worthwhile t o  look a t  some mere 

of t h e  impl ica t ions  of  Eqs. (10) and (11).  A p a r t i c u l a r l y  i n t e r e s t i n g  

case  a r i s e s  when t h e  a c c e l e r a t i o n  parameter K is a p o s i t i v e  number and 

cons tan t .  This  i s  a case  of an  acce l e ra t ed  flow, and i n  f a c t ,  i t  i s  t h e  

acce l e ra t ed  flow t h a t  is  obtained when t h e  f l u i d  is  confined between t w a  

s t r a i g h t  bu t  converging planes.  The p o s s i b i l i t y  e x i s t s ,  according t o  

Eq. ( l o ) ,  t h a t  an  equi l ibr ium w i l l  be  reached such t h a t  Re remains 
M 

cons t an t ,  and indeed such flows a r e  observed experimental ly .  There are 

obvious experimental advantages i n  be ing  a b l e  t o  hold such an important 

parameter a s  ReM cons t an t ,  and so  t h e  constant-K boundary l a y e r  has 

been ex tens ive ly  s tud ied .  Most of t h e  experimental d a t a  obtained by the 

author  and h i s  col leagues f o r  vary ing  free-stream v e l o c i t y  have been f o r  

constant-K a c c e l e r a t i n g  boundary l a y e r s .  According t o  Eq. ( l l ) ,  however, 

t h e  thermal boundary l a y e r  w i l l  cont inue t o  grow even though t h e  momentks.~ 

boundary l a y e r  has  reached t h e  equi l ibr ium,  o r  asymptotic condi t ion ,  

It has been ~ b s e r v e d  experimental ly  t h a t  s t r o n g  a c c e l e r a t i o n ,  i,e,, 

l a r g e  K , w i l l  l e a d  t o  a  " r e t r a n s i t i o n "  of t h e  tu rbu len t  boundary layer 

t o  a  laminar boundary l aye r .  One might p r e d i c t  t h a t  t h i s  would occur simply 

from examination of Eq. (10) alone.  A l a r g e  p o s i t i v e  va lue  of K will 

cause Re t o  decrease ,  and i f  K is  s u f f i c i e n t l y  l a r g e  Re w i l l  be  
M M 

pushed down i n t o  t h e  reg ion  of s t a b l e  laminar boundary l a y e r s .  This i s  

no t  t o  s ay  t h e  
ReM is  n e c e s s a r i l y  t h e  s o l e  c r i t e r i o n  f o r  " r e t r ans i t i on"" ,  

b u t  i t  c e r t a i n l y  must be  a n  important one. Assuming f o r  t h e  moment tha t  

some c r i t i c a l  va lue  of Re (say ,  200-400) is  t h e  dominant c r i t e r i o n ,  
M 

Eq. (10) immediately sugges ts  t h a t  p o s i t i v e  va lues  of F w i l l  tend t o  



i n h i b i t  " re t rans i t ion" ' ,  whi le  nega t ive  va lues  w i l l  a i d  it. This i s  actually 

what i s  experimental ly  observed. For F = 0 " r e t r a n s i t i o n "  o r  "laminarization" 

-6 w i l l  occur whenever K exceeds about 3 x 10  f o r  an extended d i s t a n c e  a long  

a su r f ace .  For F p o s i t i v e  (blowing) a t u r b u l e n t  boundary l a y e r  can b e  main- 

t a ined  a t  considerably h igher  va lues  of  K without  " laminar iza t ionR' ,  For F 

negat ive  ( s u c t i o n ) ,  both " laminarizat ion" and t h e  asymptotic suc t ion  l a y e r  are 

-6 
approached a t  values of  K lower than  3 x 10 , and i t  i s  very d i f f i c u l t  t o  

t e l l  which comes f i r s t  when examining experimental  da t a .  

It i s  experimental ly  observed f o r  t h e  case  of no t r a n s p i r a t i o n ,  

F = 0 , t h a t  l amina r i za t ion  causes a very s u b s t a n t i a l  reduct ion  i n  Stent~n 

number, b u t  t h a t  t h i s  phenomena is  a continuous func t ion  of K r a t h e r  than 

an  abrupt  change a t  some c r i t i c a l  va lue  of K . I n  o the r  words, a t  any posi- 

t i v e  va lue  of K t h e r e  w i l l  be  some reduct ion  i n  Stanton number (relative ro 

what t h e  Stanton number would have been a t  t h e  same va lue  of 
R p i  f o r  3 = 0). 

On t h e  b a s i s  of t h e s e  f a c t s ,  one might be  l e d  t o  conclude t h a t  blowing, under 

a c c e l e r a t i n g  free-strsam condi t ions ,  would l e s s e n  t h e  decreas ing  S tan ton  nun- 

b e r  tendency, whi le  s u c t i o n  would enhance i t .  

On Fig. 9 ,  t h e  r e s u l t s  of two tes t - runs  repor ted  by Th ie lbah r , e t  al [If] 

a r e  p l o t t e d .  I n  t h e  upper p a r t  of t h e  diagram, t h e r e  i s  a case  of m i l d  blow- 

i n g ,  F = 0.001 , s t a r t i n g  wi th  cons tan t  f ree-stream v e l o c i t y ,  followed by a. 

r e l a t i v e l y  s t r o n g  a c c e l e r a t i o n ,  K = 1.47 x , and f i n a l l y  r e v e r t i n g  t o  

cons tan t  f ree-stream ve loc i ty .  The a c c e l e r a t i o n  does,  indeed,  appear t o  cause 

a smal l  reduct ion  i n  S tan ton  number. A t  t h e  end of t h e  a c c e l e r a t i o n ,  chere 

appears  t o  be  a s t a r t  of a recovery back toward t h e  l i n e  f o r  K = 0 , b u t  i t  

i s  only a p a r t i a l  recovery. A reason f o r  t h e  f a i l u r e  of recovery would be  

found i f  one examined t h e  va lues  of ReM and ReH i n  t h e  recovery region, 



ReH is  very much g r e a t e r  than  Re and Re ca tches  up only very slowly, 
M Y  M 

a f a c t  t h a t  an  examination of Eqs. (10) and (11) would make apparent ,  

The second set of d a t a  on Fig. 9 shows a  ca se  of a  r a t h e r  strongly 

blown boundary l a y e r ,  F = 0.006 , t h a t  develops a t  cons tan t  f r e e - s t r e a a  

v e l o c i t y ,  and then  is  subjec ted  t o  a  r e l a t i v e l y  mild a c c e l e r a t i o n ,  

-6 
K = 0.8 x 10 . Surp r i s ing ly ,  t h e  e f f e c t  of a c c e l e r a t i o n  is  p rec i se ly  

t h e  r eve r se  of t h e  previous case.  Stanton number tends  t o  i nc rease  above 

t h e  va lue  f o r  no acce l e ra t ion .  

A t t en t ion  has  been drawn t o  t hese  examples merely t o  i l l u s t r a t e  

t h e  f a c t  t h a t  t h e  combination of t r a n s p i r a t i o n  and vary ing  free-stream 

v e l o c i t y  r e s u l t s  i n  complex i n t e r a c t i o n s  t h a t  a r e  n o t  going t o  be cnder- 

s tood  un le s s  t h e  b a s i c  t u rbu len t  t r a n s p o r t  mechanisms a r e  s tud ied  in more 

d e t a i l .  It does no t  appear p r a c t i c a b l e  o r  f r u i t f u l  t o  at tempt  t o  describe 

t h e  kind of behavior shown on Fig. 9 by use  of t h e  i n t e g r a l  equat ions and 

i n t e g r a l  c o r r e l a t i o n s .  Let  us examine a  more fundamental approach, 



Some Models for Solution of the Momentum Differential Equation of - the 

Boundary Layer - The digital computer has, in a period of no more than 

five or six years, revolutionized turbulent boundary layer theory and 

turbulent boundary layer prediction methods. Stable, accurate finite-differ- 

ence solutions to the momentum, energy, and mass diffusion equations of the 

boundary layer have become practicable, Fast, economic procedures are 

available which include the possibility of an infinite variety of boundary 

conditions as well as the inclusion of variable fluid properties, viscous 

dissipation, chemical reaction, etc. It is not the present intention to 

extol1 the virtues of any particular procedure; actually there are several 

very good ones in common use. However, the accuracy of any of the caEcu- 

lation procedures depends upon the basic physics introduced into it, and 

this is our present concern. 

The time-average momentum equation of the boundary layer, particular- 

ized for the moment to constant fluid properties, and neglecting normal 

turbulent stresses, may be written as follows: 

- 
If the turbulent shear stress u'v' were known at all points ir: the 

boundary layer, the momentum problem simply becomes one of solution of Eq. 

(12) for any desired boundary conditions, including transpiration, As dLs- 

cussed above, numerous adequate finite-difference methods are available to 

do this, 



Although progress continues to be made in turbulent transport theory 

in general, and turbulent boundary layer theory in particular, it is s t i l l  

fair to say that there is as yet no truly fundamental turbulence theory tha t  

may be used as a universal starting point for solution of turbule~~ce problems, 

Turbulent boundary layer theory has gone through, and continues to gc rhrough, 

a series of stages invclving successively higher orders of sophis t i  ca t~nn- 

Each step in this process involves the correlation of experimental data at a 

more fundamental level, opening up the possibility of solving successi-qely 

broader ranges of problems with a single consistent set of empirical constants, 

The information and calculating procedures to be presented here do not represent 

any very bold steps toward a more general theory, Higher order models are 

presently being investigated by numerous researchers, and hopefuLLp will lead 

to theories that embrace still broader classes of applications, although 

probably at the price of complexity and computation cost, In the meantrme, 

it will be demonstrated here that a relatively simple model can be used to 

adequately predict the behavior of the transpired boundary layer over a 

sufficiently wide range of conditions to make it a very practicable tool for 

engineering design, 

We will first introduce the concept of eddy diffusivity for mameatrun,  

E , as a convenient way of expressing the turbulent shear stress, 
M 

Already, we are in the realm of theoretical controversy, but the eddy 

diffusivity concept has the computational virtue of allowing one to use the 



same computation program for both laminar and turbulent boundary layer. Since 

most turbulent boundary layers grow out of laminar boundary layers, the ad- 

vantage is obvious. 

It is convenient to visualize the turbulent boundary layer as con- 

sisting of an inner wall-dominated region, and an outer region which physic- 

ally orzx~pies most of tbe thickn~ss cf +he boundary layer. Ev~ever, fcr nost 

applications the inner region turns out to be by far the more important one, 

and it is to this region that we will now focus primary attention, 

The inner region is characterized by a region immediately adjacent to 

the wall in which viscous forces predominate (u"v" approaches zero), and a 

region farther out in which momentum transfer is almost entirely by t u r b u l e n t  

transport processes, but in which the scale and intensity of the turbulence 

is still strongly dependent upon the proximity of the wall. Between these 

is a transition region in which both mechanisms are important in varying degrees, 

Some analysts prefer to represent the entire inner region by an empirieaXly 

established "law-of-the-wall", but probably the most significant conc lus~-on  

that has come out of the experimental work upon which this paper is based is 

that the thickness of the viscous-dominated part of the inner region is 

strongly dependent upon both transpiration and free-stream pressure gradient, 

and thus no single law-of-the-wall can be adeauate. 

The Prandtl mixing-length theory, despite much criticism for many 

years, still provides a remarkably adequate basis for describing the turbulezzt 

momentum transport process in the inner region, The mixing-length, il is 

defined such that it is related to the eddy diffusivity for momentum and the 

mean velocity gradient by the following equation: 



Outside of the viscous-dominated region immediately adjacent to the 

wall, the mixing-length in the inner region of the boundary layer seems to 

be proportional to distance y from the wall, with a proportionality factor, 

k , which can be assumed to be independent of either transpiration rat2 or 

pressure gradient. Whether or not k is a truly universal constant is not 

highly important, because another constant to be described shortly can be 

used to absorb any dependence on transpiration or pressure gradient; the 

experimental data are not sufficiently accurate to justify finer discrimination, 

Thus we will model the region outside of the viscous near-wall region (which 

we will now term the viscous sublayer), but inside of the outer, or BFwakei', 

region, by: 

The viscous sublayer can be modelled in a simple way by introducing a 

damping function that forces the mixing-length R to zero at the wall, 

Designating the damping function as D , the mixing-length may then be 
expressed as: 



The damping function D can be any function that is equal to zero 

at the wall and equal to unity at large values of y , but obviously some 

functions will model the actual experimental data better than others, The 

simplest possible damping function idealizes the sublayer as a f i n i c e ,  pc re ly  

viscous region as follows: 

+ 
y is the non-dimensional distance from the wall expressed. in 

so-called wall coordinates. + is then the effective viscous sublzyer 
Ycrit 

thickness. For the flat-plate case with no pressure gradient and no trans- 

+ 
piration, Ycr it 

is measured to be approximately 11,O . For accelerating 
+ 

flows, Ycrit increases, for transpiration y + decreases, and for suction crit 
+ 
Ycrit 

increases. A reasonably adequate scheme can be developed using this 

very simple damping function, its main deficiency being that it does not 

model the velocity profile very well in the y+ range 5 to 30. 

Another scheme which is very popular today was first suggested by 

Van Driest [I?]. The Van Driest damping function is exponential, so that 

the influence of the viscous region decays smoothly from the wall and is 

+ 
still felt as far out y = 50 . The simplest version of the Van Driest 
damping function is that given in the following equation: 

+ + 
D = 1.0- exp (-y /A ) 



I n  t h i s  case  A+ becomes an  e f f e c t i v e  viscous sublayer  th ickness  t h a t  

must be e s t a b l i s h e d  experimental ly .  For t h e  f l a t - p l a t e  case, A' = 26.0 

-+ 
i s  approximately what i s  obtained,  However, t h e  p r e c i s e  va lue  of A 

depends t o  a c e r t a i n  e x t e n t  upon t h e  va lue  of t h e  mixing-length constanR k . 
+ 

Fig. 10 shows the  va lues  of A t h a t  a r e  obtained f o r  d i f f e r i n g  values of 

k t o  y i e l d  i d e n t i c a l  values of u-!- a t  an  a r b i t r a r y  = 80.0 . T h e r e  js 

some evidence t h a t  a t  low Re i.e., below 6000, k tends t o  i nc rease  M ' 
( s e e  Simpson [18] ), b u t  t h e  d a t a  upon which t h i s  paper i s  based a r e  not 

conclus ive  i n  t h i s  regard,  and k = 0.44 i s  used f o r  a l l  of t h e  illustrative 

c a l c u l a t i o n s  t o  follow. Those p r e f e r r i n g  o the r  values of k can use F i g ,  

10 a s  a b a s i s  f o r  changing a l l  of t h e  func t ions ,  as w i l l  be  seen later, 

-!- + 
Like Ycrit , A i s  found t o  be a func t ion  of both a pressure  gradient 

parameter and a t r a n s p i r a t i o n  parameter (and perhaps o the r  th ings  y e t  to be 

f 
The non-dimensional d i s t a n c e  from t h e  wa l l  y conta ins  w i th in  it 

f 
t h e  wa l l  shear  s t r e s s  To A' i s  simply t h e  va lue  of y a t  t he  

e f f e c t i v e  outer  edge of t h e  sublayer ,  and thus  i s  a l s o  normalized with r ~ e s p e c t  

t o  -ro . It can be argued t h a t  i n  t h e  reg ion  under consideration.,  a local 

Reynolds number of tu rbulence  can be def ined  a s  

Rt , t h e  turbulence  length  sca l e ,  i s  e f f e c t i v e l y  equal  t o  t h e  

mixing-length R = ky . Thus, 



In the flat-plate case, the shear stress T is essentially equal to 

T out to a distance well beyond the viscous sublayer, so that Re is 
0 t 

+ + 
equal to ky . Thus A can be interpreted as a critical value of the 

local Reynolds number of turbulence, which determines the viscous sublayer  

thickness. 

If this idea has ar;y ne~it, hcwe;-zr, aczcuni s h o ~ l d  tc tzhzn cT 

fact that for flows with pressure gradients in the flow direction, or for 

transpired boundary layers, the local shear stress can vary markedly wir.11 y 

in the region near the wall, in which case the local shear stress ought to 

be used in the damping function rather than the wall shear stress, This 

notion has led to the following alternative form for the Van Driest damping 

function 

0 = 1.0 - exp (-y+Jr+ /A+) 

+ where r = T J T ~  

Eq. (20) is appealing because it immediately suggests that for strongly 

+ -I" 
accelerating flows, where T decreases very sharply with increasing y 

it would be possible to have a sufficiently strong pressure gradient so that 

D would remain a very small number throughout the boundary layer. This, of 

course, would correspond to the observed phenomena of laminarization, In 

other words, this would be a situation where Ret never exceeds a critical 

value of the Reynolds number of turbulence, A+ , and the entire boundary 

layer remains laminar. Similarly, the thinning of the laminar sublayer  that is 

observed for blowing is correctly modelled, as well as the opposite trend for 

suction. These features have led some analysts to prefer Eq. (20) over 



Eq. (18) as a basis for defining A+ . It is important to recognize this 
difference (and there are still other schemes) because otherwise it is 

difficult to compare the results of different workers. 

Despite the fact that Eq. (20) with A+ = 26.0 yields the trends 

that are observed experimentally, the observed effects are considerably 

greater. Thus for transpiration and/or pressure gradient it still becomes 

necessary to express A+ as a function of a transpiration parameter and a 

pressure gradient parameter. Using wall coordinates, these are respecktvely 

+ + 
v and P (defined in the ~omenclature), All that is accomplished by 
W 

using Eq. (20) in preference to Eqe ( 18) is to somewhat lessen the dependence 

of A+ upon these parameters. 

+ 
Values of A as defined by Eq. (20) have been determined from a wide 

range of experimental velocity profiles for blowing, suction, acceleration, 

and combinations of acceleration and transpiration, from the work of Simpson 

et a1 [lo], Julien et a1 [lg], and Loyd et a1 [20]. The following equation is 

an empirical correlation of these results and fits them all with a tolerance 

of about - +10 percent. 

+ 
where A+ is the value of A for no transpiration and no pressure 

0 

gradient, as taken from Fig. 10. Eq. (21) is plotted on Figure 18 for the 

case of k = 0.44 . Here the effects of a favorable pressure gradient, and 
the effects of transpiration are clearly seen, Although the equation itself 

+ 
extends to positive values of P , and may well be valid there, the experi- 

mental data upon which Eq. (21) is based are all for the case of accelerating 

+ 
flows (negative P ). 



Another damping function, proposed by Evans et a1 [21], utilizes a 

linear function as follows: 

In this case B+ becomes an effective viscous sublayer thickness, This 

function involves a discontinuity, but only in D , not in either mixing-lengtb 

or the resulting velocity profile, For very high Prandtl number fluids, the heat 

transfer behavior turns out to be very sensitive to the behavior of the damping 

+ 
function at small values of y . It is important to note that the Van Driesc 

+ 
function is also linear at small values of y , so either scheme seems 

equally attractive from this point of view, (~0th schemes result in 
E ivC 

varying as y as the wall is approached). The Evans damping function seems 

to give velocity profiles that are a little closer to the experimental data 

+ 
at values of y < 100 , and therefore is especially attractive for low Reynolds 

number work. 

+ + 
Like A , the value of B depends to a certain extent upon the vs lue  

of mixing-length constant k used. Fig. 10 shows this dependence, 

+ 
Values of B have been determined from the experimental data cited 

above, and these results are correlated within about 210 percent by the 

following equation. 



Again,  3' i s  taken from Figure  10. Eq. (23)  i s  p l o t t e d  on Fig. 12 
0 

-I-. 
f o r  t h e  case  of k = 0.44 . The behavior  i s  very s i m i l a r  t o  t h a t  of A ; 

t h e r e  i s  a somewhat s t ronge r  e f f e c t  of v+ and I?' , b u t  t h i s  i s  due to the 
W 

f a c t  t h a t  Eq. (20) conta ins  t h e  shear  s t r e s s  r a t i o  r+ . Had the comparison 

+ -B- 
been made wi th  A def ined a s  i n  Eq. (18) ,  i t  would be found t h a t  B d i f f e r s  

+ 
from A by almost a cons tan t  f a c t o r .  

F igs ,  13 and 14 show examples of t h e  inne r  reg ion  v e l o c i t y  profiles 

( i . e . ,  t h e  law-of-the-wall) a s  p red ic t ed  by i n t e g r a t i o n  of Eq. ( 12) us ing  

+ 4- 
t h e  3 scheme, and a comparison wi th  experimental  da ta ,  i n  t h e  range 

10 t o  100 ( t h e  temperature p r o f i l e  on Fig.  13 w i l l  be discussed p r e s e n t l y , )  

4- 
The d a t a  on Fig. 13 a r e  from s e v e r a l  t e s t  runs f o r  vf = 0.0 and P = OeO ; 

W 

they correspond c l o s e l y  t o  t h e  d a t a  t h a t  a r e  genera l ly  found i n  t he  literature 

f o r  t h i s  b a s i c  case.  F ig ,  14 shows two cases  of blowing alone,  and one case 

of a combination of blowing and acce l e ra t ion .  As can be seen, the prediction 

+ 
i s  e x c e l l e n t ;  t h e  A scheme i s  a l s o  q u i t e  adequate,  bu t  s l i g h t l y  underpredic-Css 

+ 
u+ i n  t h e  y range 10-50. 

A word should now be s a i d  about t h e  reasons f o r  t h e  observed dependence 

+ 4- 
of A o r  B upon P+ and v + . It was suggested e a r l i e r  that ehe 

W 

ou te r  edge of t h e  v iscous  sublayer  might be cha rac t e r i zed  by some critical 

value  of t h e  l o c a l  Reynolds number of turbulence,  Eq. ( l g ) ,  and indeed t h i s  

hypothesis  does y i e l d  t h e  c o r r e c t  t r ends  wi th  v + and I?' . This  scheme 
W 

4- 
appl ied  t o  A' y i e l d s  somewhat b e t t e r  r e s u l t s  than i f  appl ied  to 

'crit: " + 
If  app l i ed  t o  3 , it works b e t t e r  s t i l l .  Since each of t hese  three schemes 

employs an  e f f e c t i v e  sublayer  th ickness  t h a t  i s  g r e a t e r  than  the  previous one, 

+ 
it appears  poss ib l e  t h a t  t h e  va lue  of y a t  which f u l l y  developed self-sus- 

t a i n i n g  turbulence  obta ins ,  and t h e r e f o r e  a t  which t h e  Reynolds.nunber of 



7e 
turbulence has exceeded some critical value, is at a value of y greater 

than the effective sublayer thickness used in these models. An investigation 

by Andersen [22] based on the experimental data cited above, has reveaLed 

+ 
the interesting fact that if y equal to about 2 times B+ is chosen as 

the critical point, the local Reynolds number of turbulence is very close 

to the same number for all of the data examined. These data inclr~de some 

37 test runs covering a wide range of transpiration, acceleration, and 

combinations of transpiration and acceleration. To be more precise, at 

y+ = 2~' , the Reynolds number of turbulence, Ret , is equal to about 33.0 

over the entire range of tests. In other words, with this fact alone it is 

possible to calculate B+ as a function of P+ and v+ and to obtain 
W 

results that correspond remarkably closely to those represented b j ~  Eq, (231, 

or Fig. 12, Thus the concept that the thickness of the viscous sublayer  is 

determined by a critical Reynolds number of turbulence seems at the present 

time to be an attractive one. 

+ A+ and B as represented by Eqs. (21) and (23), were obtained under 

what might best be described as equilibrium conditions, i.e., conditions under 

which V+ and/or P+ are invariant or at worst are varying only slowly along 
w 

the surface. Under non-equilibrium conditions where these parmeters sre 

changing rapidly or abruptly, it has been observed that the sublayer does 

+ 
not change abruptly to its new equilibrium condition, i,e., B does not 

immediately assume its new equilibrium value. Given the stability nature of 

the problem, this is probably not surprising, It can be hoped that some of 

the higher order models of turbulence will predict this effect, but in i:he 

meantime, a reasonably satisfactory expedient is to use a rate equation of a 

type suggested by Launder [23] : 



is the effective value of B', while B+ is the equilibriilm~~alue 
Beff eq 

obtails4. £ran Eq. (23), A vales cf C cf 2bout L.9 has been fo~ina to k e  

reasonable , 

All of the discussion up to now has been concerned with the inner 

region of the boundary layer. The outer region,comprising the greater part of 

the boundary layer thickness, is of considerably less importance in preciicting 

performance, and thus can be handled successfully using more gross approxi- 

mations. This statement may not be valid for very non-equilibrium boundary 

layers under adverse pressure gradient conditions, but how valid it actually 

is for accelerating flows and for transpired boundary layers with and wi . t hou t  

acceleration, will be demonstrated later, In any case, for equilibrium ar 

near equilibrium boundary layers, either the assumption of a constant v e l u e  

of eddy diffusivity over the entire outer region, or the assumption of a 

constant value of mixing-length over the entire outer region yields approxi- 

mately the same result. If constant eddy diffusivity is used, an enrpirscal 

correlation of eddy diffusivity as a function of momentum thickness Reyqo~ds 

number can be obtained. However, if mixing-length is used in the inner regions, 

it is probably computationally simpler to use the mixing-length concept f o r  the 

entire boundary layer. A satisfactory scheme is to express the outer region 

mixing-length as a fraction, A of the total boundary layer thick~less, 



A = 0.085 o r  0.080, based on t h e  99% boundary l aye r  th ickness ,  works 

remarkably w e l l  f o r  t h e  e n t i r e  range of t e s t  d a t a  on which t h i s  papea: is based, 

One simply eva lua t e s  Q from Eq. (15) u n t i l  t h e  va lue  obtained exceeds 

Q = Asmgg . and then  uses  t h e  l a t t e r  va lue  f o r  t h e  remainder of t h e  boundary 

layer .  

At- v a l ~ ~ e e  of Ryq l e s s  than  about  6.000 . t h e r e  i s  some evidence that 

A i s  g rea t e r .  The fol lowing i s  an  empi r i ca l  f i t  t h a t  works reasonably 

s a t i s f a c t o r i l y o  

Boundary l aye r  p r e d i c t i o n s  f o r  s t r o n g  blowing a r e  somewhat improved i f  

t h i s  l a t t e r  c o r r e c t i o n  i s  no t  made. This  may a c t u a l l y  be i n d i r e c t  evidence 

t h a t  t he  mixing-length cons tan t ,  k , i s  lowered by s t rong  blowing, but this 

kind of d i sc r imina t ion  i s  very d i f f i c u l t  t o  make from the  a v a i l a b l e  data, 



Layer - The time-averaged energy equation of t h e  boundary l ayer ,  p a r t i e w -  

l a r i z e d  t o  constant f l u i d  proper t ies  and neg l ig ib le  viscous d i s s ipa t ion ,  

and neglect ing turbulent  conduction i n  the  stream d i rec t ion ,  may be w r i t t e n  

a s  follows : 

This equation can be solved f o r  any desired boundary conditions pro- 

viding t h a t  the  veloci ty  f i e l d  has been es tabl ished f i r s t  by so lu t ion  of the  

- 
momentum equation, and providing t h a t  w e  have information on t%' For 

convenience we introduce the  concept of eddy d i f f u s i v i t y  f o r  hea t ,  
53 * 

Although i t  might be f r u i t f u l  t o  attempt t o  evaluate t ' vvP  or 

on the  bas i s  of assumptions t h a t  a r e  independent of t h e  turbulent  shear 

s t r e s s ,  it seems apparent t h a t  the re  is some kind of r e la t ionsh ip  between 
- - 
t ' v '  and u'v'  , o r  54 and t& . Therefore most ana lys t s  have found 

i t  convenient t o  introduce t h e  concept of turbulent  Prandt l  nunaber, Pr 
t 

defined a s  follows: 

Introducing Eqs. (27) and (28) i n t o  Eq. (26) w e  obtain:  

34 



I f  
Pr t  were known, Eq. (29) could be  so lved  f o r  any des i r ed  

boundary condi t ions  so  long a s  t h e  momentum equat ion  must be  solved anyway, 

Evaluat ion of t h e  tu rbu len t  P r a n d t l  number i s  then  one of t h e  c e n t r a l  pro$- 

lerns of t u rbu len t  h e a t  t r a n s f e r .  

A very  s imple phys i ca l  model of t h e  t u r b u l e n t  momentum and energy 

t r a n s f e r  process  l e a d s  t o  t h e  conclusion t h a t  $ = % ,  i i . e . ,  P r  = R,00 
t 

( t h e  "Reynolds Analogy"). S l i g h t l y  more s o p h i s t i c a t e d  models suggest  that 

Pr t  > 1.00 f o r  Pr  < 1.00 , and s t i l l  o t h e r  models suggest  t h a t  P r t  equals  

0.7 o r  0.5 i n  t u rbu len t  wakes. The experimental  d a t a  a r e  no t  abundant, 

b u t  Figs .  1 5  and 16  show t h e  measurements, r e s p e c t i v e l y ,  of Simpson, I t k i t t en ,  

and Moffat [24] ,  and of Kearney, Moffat, and Kays [25] ,  wi th  a i r  a s  a work-  

i n g  substance.  These were a l l  evaluated from measurements of t h e  s lopes  of 

mean v e l o c i t y  and temperature p r o f i l e s ,  t oge the r  wi th  es t imates  of shear 

s t r e s s  and h e a t  f l u x  d i s t r i b u t i o n s ,  and t h e  experimental  unce r t a in ty  i s  high. 

The d a t a  on Fig. 15  a r e  a l l  f o r  cons tan t  f ree-stream v e l o c i t y ,  bu t  cover a 

wide range of blowing and s u c t i o n  condi t ions .  The d a t a  on Fig. 16 a r e  fe r  

acce l e ra t ed  boundary l a y e r s  wi th  a cons iderable  raqge of blowing and suction, 

+ 
The choice of y a s  a b a s i s  f o r  comparison i s  made only because a 

s l i g h t l y  b e t t e r  c o r r e l a t i o n  is  obtained than  wi th  o t h e r  parameters ,  but even 

t h i s  f a c t  i s  debatable .  However, d e s p i t e  t h e  very cons iderable  s c a t t e r  of 

d a t a ,  two conclusions seem d e f i n i t e l y  warranted. F i r s t ,  t h e  t u rbu len t  

P r a n d t l  number, a t  l e a s t  f o r  a i r ,  has  an  o rde r  of magnitude of un i ty ,  This 

f a c t  a lone  is s i g n i f i c a n t ,  f o r  i t  provides cons iderable  j u s t i f i c a t i o n  f o r  



use  of t h e  concept of eddy d i f f u s i v i t y  i n  t h e  f i r s t  p lace .  The second 

conclusion i s  t h a t  P r  i s  ev iden t ly  l e s s  than  1.00 i n  t h e  wake or outer 
t 

reg ion ,  whi le  i t  is  g r e a t e r  than  1.00 nea r  t h e  w a l l .  Very near  t h e  wall 

t h e  experimental unce r t a in ty  becomes excess ive ,  s o  t h a t  i t  is  no t  possible 

t o  e s t a b l i s h  any l i m i t i n g  va lue  i n  t h i s  r a t h e r  c r i t i c a l  region.  

Another way of eva lua t ing  tu rbu len t  P r a n d t l  number from experimerrtal 

temperature p r o f i l e s  i s  t o  determine by computer experiments t h e  turbuleelt 

P r a n d t l  number func t ion  t h a t  must be used i n  o rde r  t o  p r e d i c t  given experi- 

mental temperature p r o f i l e s  us ing  Eq. (29) and any one of t h e  models f o r  

% previous ly  discussed.  I n  e f f e c t  t h e  experimental  v e l o c i t y  p r o f i l e  i s  

p a r t i a l l y  removed from cons ide ra t ion ,  b u t  d i f f e r e n t  r e s u l t s  f o r  P r t  wiLl 

be  obtained depending upon how w e l l  t h e  model f o r  % reproduces t rue  ve- 

l o c i t y  p r o f i l e s .  

Using t h i s  scheme, t h e  r e s u l t s  on Fig. 1 7  f o r  t h e  inne r  region were 

obtained us ing  t h e  B+ damping func t ion ,  Eq.  (221, and experimental  dare for 

s e v e r a l  cases  of blowing and a c c e l e r a t i o n ,  a s  w e l l  a s  some d a t a  based on the  

average of s e v e r a l  non-transpired,  non-accelerated runs. B+ f o r  each run 

was evaluated from t h e  corresponding v e l o c i t y  p r o f i l e  by a  computer experi- 

ment t h a t  forced t h e  computed and measured v e l o c i t y  p r o f i l e s  t o  match a t  an 

a r b i t r a r y  yC = 80 . The r e s u l t s  a r e  thus  independent of v e l o c i t y  measure- 

+ 
ments a t  very sma l l  values of y  . For y+ > 30 t h e r e  seems no question 

t h a t  t h e  most probable va lue  of 
P r t  i s  simply 1.00, i . e . ,  t h e  Reynolds 

Analogy, r ega rd l e s s  of t r a n s p i r a t i o n  o r  acce l e ra t ion .  On t h e  o the r  hand 

t h e r e  i s  a d e f i n i t e  i n d i c a t i o n  of much h ighe r  + 
P r t  f o r  lower y Note 

of course t h a t  s i n c e  only y+ < 100 i s  be ing  considered,  t h e  lower Prt 



t h a t  seems c h a r a c t e r i s t i c  of t h e  o u t e r  reg ion  i s  n o t  seen.  

The same computer experiment performed wi th  t h e  A+ damping function 

+ 
tends t o  y i e l d  va lues  of Pr  t h a t  average about 0.9 f o r  y  > 30 , bur  o thex-  

t 

wise t h e  same conclusions a r e  reached. However, s i n c e  t h e  B+ scheme gener-  

-k 
a l l y  p r e d i c t s  t h e  v e l o c i t y  p r o f i l e s  more a c c u r a t e l y  i n  t h e  reg ion  y < 100 , 

i t  would seem t h a t  t h e  r e s u l t s  on Fig. 17 more n e a r l y  r ep re sen t  t h e  truth, 

(The term " t ru th"  h e r e  must be q u a l i f i e d ,  because i f  A+ is  being used i n  a 

boundary l a y e r  p r e d i c t i o n  scheme, i t  i s  necessary  t o  use  values of P r t  
'5ased 

on A+ , even though these  va lues  d i f f e r  from what might be measured directly. ) 

-e 
The abso lu t e  n e c e s s i t y  f o r  a  high 

Prt 
a t  very low values of y 

i s  w e l l  i l l u s t r a t e d  by t h e  d a t a  and c a l c u l a t i o n s  f o r  temperature p r o f i l e  

shown on Fig. 1 3  f o r  t h e  ca se  of no t r a n s p i r a t i o n  and no p re s su re  gradkei r t ,  

For y+ g r e a t e r  than  about 30 two p a r a l l e l  l i n e s  desc r ibe  t h e  v e l o c i t y  and 

temperature p r o f i l e s  very wel l .  This  can be i n t e r p r e t e d  a s  meaning t h a t  

P r t  = 1.00 . However, i f  an a t tempt  is  made t o  p r e d i c t  t h e  temperature pro- 

f i l e  wi th  P r  = 1.00 throughout,  t h e  r e s u l t  i s  a s  shown. A h igher  Pr i s  
t t 
-I- 

needed f o r  y  < 30 t o  avoid badly underpredic t ing  t+ i n  t h e  -yi range 

30 t o  100. Closer examination r evea l s  t h a t  i t  makes l i t t l e  d i f f e r e n c e  Sow 

+ 
high  P r t  is  f o r  y' < 10 , and a t  y  = 15 i t  is  a l r eady  too  l a t e  t o  in- 

+ 
traduce t h e  co r r ec t ion .  Apparently f o r  y < 15 tu rbu len t  v e l o c i t y  fluctua- 

t i o n s  r e s u l t  i n  a  considerably g r e a t e r  r a t e  of t r a n s p o r t  of momentum thac. of  

h e a t  f o r  reasons t h a t  a r e  no t  y e t  f u l l y  understood. The h e a t  conduction model  

of Jenkins  [25] would p r e d i c t  t h i s  t r e n d ,  bu t  no t  t h e  concent ra t ion  of the 

e f f e c t  i n  t h i s  narrow region.  

A t  t h e  p re sen t  t i m e  an empi r i ca l  c o r r e l a t i o n  of t h i s  e f f e c t  seems t h e  



most p r a c t i c a b l e  expedient  i f  h e a t  t r a n s f e r  r a t e s  a r e  t o  be  ca l cu la t ed ,  The 

assumption of a  cons tan t  va lue  of P r  = 0.9 throughout t h e  boundary layer  
t 

w i l l  y%&ld o v e r a l l  h e a t  t r a n s f e r  r a t e s  t h a t  a r e  q u i t e  s a t i s f a c t o r y ;  tempera- 

t u r e  p r o f i l e s  can be  more accu ra t e ly  predic ted  i f  a  v a r i a t i o n  of Pr :+~:Lch 
t 

i s  introduced.  The fol lowing c o r r e l a t i o n s  have been used successfu1;y 

by t h e  w r i t e r  f o r  air: 

I f  A' is  used a s  t h e  damping func t ion  (Eq. 20) : 

+ 
The dependence upon v i n  Eq. (30) i s  no t  based on t h e  raw Pr 

W t 

d a t a  i n  Figs.  15  and 16,  bu t  r a t h e r  upon computer experiments us ing  the 

A+ scheme f o r  eva iua t ion  of " M e  
I f  B+ i s  used a s  t h e  damping func t ion:  

Figure 1 3  shows an  example of an inne r  reg ion  temperature p r o f i l e  

p r e d i c t i o n  us ing  t h e  B+ damping func t ion ,  and Eq. (31) .  Actual ly there  

a r e  any number of P r  func t ions  t h a t  work equa l ly  w e l l ,  and t h e  cosine 
t 

func t ion  i n  Eq. (31) has  no phys i ca l  s i g n i f i c a n c e .  



Some Examples of Predictions of Difficult Cases - To illustrate the quality 
of turbulent boundary layer predictions which can be made with a finite 

difference program using some of the material presented in the preceding 

sections, two rather difficult cases have been chosen. A modification of ehe 

SpaldingIPatankar [27] program was used, although any good finite difference 

should yield similar results. 

The first of these is illustrated on Fig. 18. Here is a case of r a ~ h e r  

strong blowing, F = 0.0058 , subjected to a moderately strongly accelerated 

free-stream along about half the length of the test section, with cocstank 

free-stream velocity thereafter. The variation of Urn is shown at the top 

of the diagram. This figure then shows a comparison between measured and 

predicted values of Re 
M .I Cf/2 , and St , plotted as functions of distance 

x along the test surface.  h he fluid used was room temperature air with small 

temperature differences,as was the case for all of the data considered in this 

paper). Note that ReM is almost constant throughout the accelerated region, 

a consequence of a constant-K accelerated boundary layer, as discussed earlier, 

Following acceleration ReM then increases rapidly. The comparisol? between 

experiment and prediction must be considered excellent, especially w:~en 

experimental uncertainty is taken into consideration. This prediction was made 

+ 
using the A+ damping function, but the B scheme will do equally as uell. 

Figures 19 and 20 are in some ways more impressive, for they show two 

velocity profiles and two temperature profiles £row the same test run, in r e a i  

dimensional coordinates, and a comparison between experiment and predictions, 

In each case the profile at x = 45.6 inches is one taken in the 



acce l e ra t ed  region,  wh i l e  t h e  o the r  p r o f i l e  a t  x = 69.7 inches is taken 

i n  t h e  recovery reg ion  f a r t h e r  downstream. 

Another d i f f i c u l t  case  i s  shown on Fig. 21. I n  t h i s  run, t h e  flaw 

s t a r t s  a t  cons t an t  f ree-stream v e l o c i t y  b u t  w i t h  moderately s t r o n g  blowing, 

F = .004 . This  flow i s  then  subjec ted  t o  a very s t r o n g  a c c e l e r a t i o n  starting a t  

x = 2 f e e t .  I n  approximately t h e  middle of t h e  acce l e ra t ed  region the 

blowing i s  removed e n t i r e l y .  Then a t  about x = 3.4 f e e t  t h e  acceleration 

i s  removed, and f o r  t h e  remainder of t h e  t e s t  s e c t i o n  t h e r e  i s  no blowing 

and no acce l e ra t ion .  The Stanton number p r e d i c t i o n  shown he re  was obtained 

us ing  t h e  A+ scheme, al though t h e  ou te r  reg ion  of t h e  boundary layer was 

ca l cu la t ed  us ing  a h igher  order  tu rbulence  model than  t h e  simple mixing-lengeh 

model descr ibed  here.  The tu rbu len t  k i n e t i c  energy equat ion  was solved., and 

E was determined from a n  assumed r e l a t i o n s h i p  between E and the kinecis 
1\1 M 

energy of turbulence.  However, i t  has been found t h a t  i n  flows of this type,  

use  of a t u rbu len t  k i n e t i c  energy model i n  t h e  ou te r  p a r t  of t h e  boundary 

l aye r  con t r ibu te s  very l i t t l e ,  and t o  a l l  i n t e n t s  and purposes i d e n t i c 2 1  

r e s u l t s  w i l l  be obtained wi th  t h e  simple mixing-length model, 

The important  t h i n g  t o  no te  he re  i s  t h a t  t h e  model responds remarkably 

t o  t h e  abrupt  changes i n  boundary condi t ions ,  and p r e d i c t s  t h e  r e s u l t i n g  

non-equilibrium boundary l aye r  very w e l l  indeed. O f  p a r t i c u l a r  significance 

i s  t h e  abrupt  r i s e  i n  Stanton number fol lowing t h e  removal of blowing, The 

a b i l i t y  of t he  p r e d i c t i o n  t o  fo l low t h e  d a t a  a t  t h i s  p o i n t  i s  heavi ly  dependen; 

upon t h e  use  of t h e  r a t e  equat ion  and l a g  cons tan t ,  Eq. (24) .  



Future Work - The needed future research on heat transfer to the transpired 
turbulent boundary layer can be subdivided into two general categories, 

The first of these is research that is concerned with the turbulent boundary 

layer in general, while the second is research particularized to the trans- 

pired case. All advances in the general category will contribute to a better 

understanding of the transpired boundary layer. Mention has already been made 

of investigations into higher order models of turbulence, and as time goes on 

the results of these investigations can be expected to find their way intc 

transpired turbulent boundary layer theory and prediction methods, 

The problem of turbulent Prandtl number, or more generally, t he  

problem of the turbulent transport of thermal energy, should provide a 

particularly fruitful area for research in the near future. This is obviously 

not a new problem; it was of great interest two decades ago when liquid m e t a l  

heat transfer was first being actively investigated. However, it is clear 

that a better theory is needed than is presently available, 

For the particular case of the the transpired turbulent boundary layer, 

the first obvious problem for which there is presently inadequate experimental 

data is the case of an adverse pressure gradient. Actually, the case of 

blowing and adverse pressure gradient is going to lead to early stall, so 

it is probably the suction problem with an adverse pressure gradient that 

provides the most scope for experimental work. It should be noted tha t  

Eqs. (21) and (23) will yield some numbers for use with adverse pressure 

gradients, and since these numbers can be predicted by a theory that a l s o  

predicts the other cases relatively satisfactorily, one might be temped to 

use these equations for predicting the adverse pressure gradient cases, 



However it should be emphasized that no experimental data for the adverse 

pressure gradient cases has been used to generate these empirical equations, 

In attempting to apply the transpiration results and theories 

presented, two obvious practical problems arise, Real transpiration 

surfaces frequently are aerodynamically rough, and real transpiration 

surfaces frequently are constructed by drilling a large number of small 

discrete holes in a surface rather than constructing the surface from a 

sintered powder as was done for all of the experimental data considered 

here, The roughness problem is presumably not totally unlike the roughness 

problem for the non-transpired case, although the effects of transpiration 

are at the present time completely unknown. The large hole problem opens up 

an entire field of investigation because the number of possible geometrical 

variables increases enormously. There is an entire spectrum of problems lying 

between what might be called pure transpiration,with surface holes and spacing 

small relative to the laminar sublayer thickness at one end, and film 

cooling at the other end. 

In a sense, the present paper has been concerned with only aa 

idealized case lying at one end of a very broad spectrum of turbul-ent 

boundary layer problems. 
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Comparison of Experimental and Predicted Velocity Profiles for the 
Same Case as Considered in Fig. 18, One Profile Near the End of the 
Accelerated Region, and One Profile In the Downstream Recovery Region 

Comparison of Predicted and Experimental Temperature Profiles under 
the Same Conditions as Described Under Fig. 19 

Comparison of Predicted and Experimental Stanton Kumbers for a FLOW 
Starting With Constant Free-Stream Velocity and Const-ant B T~owing, 
Followed by Very Strong Acceleration. In the Middle of the Accelerated 
Region the Blowing is Shut Off Abruptly. Finally the Acceleration is 
Shut Off so that the Last Section is at Zero Blowing and Constant 
Free-Stream Velocity. 
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